OREI Protocol Technical Whitepaper

OREI Protocol Technical Whitepaper

Genesis v1.1
Date: 2026-01-28
FIDUS Al — AN ASKEYCAPITAL COMPANY

m OREI Protocol: Technical Whitepaper

Protocol Name: OREI (Zero-Rei) Version: 1.1 Genesis Architecture: Cryptographic Audit Ledger
Classification: High-Assurance Immutable Data Store

1. Executive Summary

OREI is a high-frequency, cryptographically sealed ledger designed for environments where data integrity
is paramount (Fintech, Supply Chain, Legal). unlike traditional databases, OREI treats every write
operation as a signed legal contract.

2. Core Architecture

* HAGANE Engine (The Ledger): Built on Rust/Actix, utilizing Optimistic Concurrency Control (OCC) to
handle high-throughput transactions without locking the entire database.

* ONYX Safety Net (The Outbox): A fail-safe mechanism that captures data locally in PostgreSQL if the
streaming pipeline (Kafka) is severed, guaranteeing Crash Survivability Design.

* OREI Signatures: Every record is signed with Ed25519 cryptography using a custom Domain Separator
(OREI _I MMUTABLE_LEDGER), making tampering mathematically impossible without breaking the
signature chain.

3. Operational Guarantee
» Immutability: Once sealed, records cannot be altered.
* Resilience: The system survives complete network isolation.

» Speed: Capable of processing thousands of seals per second via asynchronous, non-blocking I/0O.

m The Deployment Package

1. Directory Setup

Run this on your machine to set up the project folder structure.

nkdir -p OREl/src/api
nkdir -p OREl/src/bin
nkdir -p ORElI/src/crypto
nkdir -p OREl/src/db

FIDUS Al — AN ASKEYCAPITAL COMPANY Page 1

OREI Protocol Technical Whitepaper

nkdir -p OREl/src/kafka
nkdir -p OREl/src/nodels
nkdir -p OREl/src/occ
cd OREI

2. The Containerization (Run Anywhere)

Create these two files in the root of OREI / . This allows you to run the system on any computer with
Docker.

Dockerfil e

Builds the Rust binary inside a container so you don't need to install Rust manually.

\# Stage 1: Buil der

FROM rust: 1. 75-sl i m bookwor m as bui | der

WORKDI R / app

RUN apt-get update && apt-get install -y pkg-config |ibssl-dev cnake make g++ & rm-rf /var/lib/apt/I]i
coPY . .

RUN cargo build --rel ease --bin OREl

\# Stage 2: Runtime FROM debian:bookworm-slim WORKDIR /app RUN apt-get update && apt-get install
-y libssI3 ca-certificates && rm -rf /var/lib/apt/lists* COPY --from=Dbuilder /app/target/release/OREI
/app/OREI ENV RUST_LOG=info CMD ["./OREI"]

docker - conpose. ym

Orchestrates the Database, Kafka, and the OREI Protocol in one command.

servi ces:
\# The OREl Protocol API
orei _api:
bui I d:
ports: ["8081:8081"]
depends_on:
- postgres
- kafka
envi ronmnent :
DATABASE _URL: postgres://orei:orei_secret @ostgres: 5432/ orei _db
KAFKA_BROKERS: kaf ka: 29092
KAFKA ENABLED: "true"
Bl ND_ADDRESS: 0.0.0.0: 8081
restart: unl ess-stopped

\# Database (ONYX Vault) postgres: image: postgres:15-alpine environment: POSTGRES_USER: orei
POSTGRES_PASSWORD: orei_secret POSTGRES_DB: orei_db volumes: -
postgres_data:/var/lib/postgresql/data \# Initialize tables automatically on first run -
Jinit.sqgl:/docker-entrypoint-initdb.d/init.sql

\# Event Streaming Infrastructure zookeeper: image: confluentinc/cp-zookeeper:7.4.0 environment:
ZOOKEEPER_CLIENT_PORT: 2181 ZOOKEEPER_TICK_TIME: 2000

kafka: image: confluentinc/cp-kafka:7.4.0 depends_on: [zookeeper] environment: KAFKA_BROKER_ID: 1
KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181 KAFKA_ADVERTISED_LISTENERS:

FIDUS Al — AN ASKEYCAPITAL COMPANY Page 2

OREI Protocol Technical Whitepaper

PLAINTEXT://kafka:29092,PLAINTEXT_HOST://localhost:9093
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP:
PLAINTEXT:PLAINTEXT,PLAINTEXT _HOST:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: PLAINTEXT
KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1

volumes: postgres_data:

init.sql

Database Schema (Save this in the root folder too).

CREATE TABLE | F NOT EXI STS entities (
id TEXT PRI MARY KEY,
version BI G NT NOT NULL DEFAULT O,
entity_type TEXT NOT NULL,
data JSONB NOT NULL,
created_at TI MESTAMPTZ NOT NULL DEFAULT NOW),
updat ed_at TI MESTAMPTZ NOT NULL DEFAULT NOW),
created_by TEXT NOT NULL,
met adata JSONB NOT NULL DEFAULT '{}'::jsonb

)

CREATE TABLE IF NOT EXISTS sealed_writes (id TEXT PRIMARY KEY, entity_id TEXT NOT NULL
REFERENCES entities(id), entity_type TEXT NOT NULL, version BIGINT NOT NULL, data_hash TEXT
NOT NULL, binding_root TEXT NOT NULL, signature TEXT NOT NULL, public_key TEXT NOT NULL,
merkle_root TEXT, created_at TIMESTAMPTZ NOT NULL DEFAULT NOW(), actor_id TEXT NOT NULL,
actor_ip TEXT, metadata JSONB NOT NULL DEFAULT '{}'::jsonb);

CREATE TABLE IF NOT EXISTS event_outbox (id BIGSERIAL PRIMARY KEY, entity_id
VARCHAR(255) NOT NULL, version BIGINT NOT NULL, event_type VARCHAR(100) NOT NULL,
payload JSONB NOT NULL, created_at TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT NOW(),
processed_at TIMESTAMP WITH TIME ZONE, retry_count INT DEFAULT 0, last_error TEXT,
CONSTRAINT event_outbox_entity_version UNIQUE (entity_id, version, event_type));

3. The Source Code (Copy & Paste)

Create these files in their respective sr ¢/ folders.

Car go. tom (Root)

[package]
nane = "coreseal"
version = "1.0.0"

edition = "2021"

[dependencies] actix-web = "4.4" tokio = { version = "1.34", features = ["full"] } serde = { version = "1.0",
features = ["derive"] } serde_json = "1.0" sqlx = { version = "0.8", features = ["runtime-tokio-native-tls",
"postgres”, "uuid”, "chrono", "json"] } ed25519-dalek = "2.1" sha2 ="0.10" rand = "0.8" hex = "0.4" uuid = {
version = "1.6", features = ["'v4", "serde"] } ulid = "1.1" chrono = { version = "0.4", features = ["serde"] }
anyhow = "1.0" thiserror = "1.0" tracing = "0.1" tracing-subscriber = "0.3" config = "0.13" dotenv = "0.15"

FIDUS Al — AN ASKEYCAPITAL COMPANY Page 3

OREI Protocol Technical Whitepaper

rdkafka = { version = "0.36", features = ["cmake-build", "ssl", "sasl"] } tokio-util = "0.7"

[[bin]] name = "OREI" path = "src/main.rs"

src/main.rs

use actix_web::{web, App, HtpServer};

use sql x:: postgres:: PgPool Opti ons;

use std::env;

use std::sync::Arc;

use coreseal ::api::{config, AppState};

use coreseal :: kaf ka: : { Kaf kaConfi g, Kaf kaProducer};
use coreseal ::occ:: CccManager;

\#[actix_web::main] async fn main() -\> std::io::Result\<()\> { // Basic env setup if
std::env::var("RUST_LOG").is_err() { std::env::set_var("RUST_LOG", "info"); }
tracing_subscriber::fmt::init();

let database_url = env::var("DATABASE_URL").expect("DATABASE_URL must be set"); let bind_address
= env::var("BIND_ADDRESS").unwrap_or_else(]_] "0.0.0.0:8081".to_string());

tracing::info\!("m OREI Protocol Online");

/I Connect to Onyx Vault (DB) let pool = PgPoolOptions::new() .max_connections(50)
.connect(&database_url) .await .map_err(|e| std::io::Error::new(std::io::ErrorKind::Other, e.to_string()))?;

/I Connect to Stream let kafka_config = KafkaConfig::from_env(); let kafka_producer =
KafkaProducer::new(kafka_config) .map_err(|e| std::io::Error::new(std::io::ErrorKind::Other,
e.to_string()))?; let shared_kafka = Arc::new(kafka_producer);

// Initialize HAGANE Engine (OCC) let occ = Arc::new(OccManager::new(pool.clone(), 5, 100,
Some(shared_kafka.clone())));

let app_state = web::Data::new(AppState { pool: pool.clone(), kafka: shared_kafka, occ: occ, });
tracing::info\!("m OREI Active on {}", bind_address);

HttpServer::new(move || { App::new().app_data(app_state.clone()).configure(config) })
.bind(bind_address)? .run() .await }

src/lib.rs

pub nod api ;
pub nod db;
pub nod error;
pub nod kaf ka;
pub nod nodel s;
pub nod occ;
pub nod crypto;

src/ crypt o/ nod. rs (The OREI Signature)

FIDUS Al — AN ASKEYCAPITAL COMPANY Page 4

OREI Protocol Technical Whitepaper

use ed25519 dal ek: : {Si gni ngKey, Signer, Signature};
use sha2::{Sha256, Digest};

use rand::rngs:: GsRng;

use crate::error::{CoreSeal Error, Result};

/[This is what makes your protocol unique const DOMAIN_SEPARATOR: &[u8] =
b"OREI_IMMUTABLE_LEDGER";

pub struct CoreSealSigner { signing_key: SigningKey, }

impl CoreSealSigner { pub fn new() -\> Self { let mut csprng = OsRng; Self { signing_key:
SigningKey::generate(&mut csprng) } }

pub fn public_key hex(&self) -\> String { hex::encode(self.signing_key.verifying_key().to_bytes()) }

pub fn sign(&self, data: &[u8]) -\> String { let mut hasher = Sha256::new();
hasher.update(DOMAIN_SEPARATOR); hasher.update(data); let hash = hasher.finalize(); let signature =
self.signing_key.sign(&hash); hex::encode(signature.to_bytes()) }

pub fn compute_binding_root(&self, entity_id: &str, entity _type: &str, version: i64, data_hash: &str) -\>
String { let mut hasher = Sha256::new(); hasher.update(DOMAIN_SEPARATOR);
hasher.update(entity_id.as_bytes()); hasher.update(entity _type.as_bytes());
hasher.update(version.to_le_bytes()); hasher.update(data_hash.as_bytes());
hex::encode(hasher.finalize()) }

pub fn hash_data(data: &serde_json::Value) -\> String { let canonical =
serde_json::to_string(data).unwrap_or_default(); let mut hasher = Sha256::new();
hasher.update(canonical.as_bytes()); hex::encode(hasher.finalize()) } }

src/api/nmod.rs

use actix_web::{web, HttpResponse, Responder};
use serde::{Deserialize, Serialize};

use sql x: : PgPool ;

use std::sync::Arc;

use crate::error::Result;

use crate:: kafka::{Event, SharedKaf kaProducer};
use crate::occ:: QcchManager;

pub struct AppState { pub pool: PgPool, pub kafka: SharedKafkaProducer, pub occ: Arc\<OccManager\>, }

\#[derive(Serialize, Deserialize)] pub struct CreateSealRequest { pub entity_id: String, pub data:
serde_json::Value, }

pub async fn create_seal(state: web::Data\<AppState\>, req: web::Json\<CreateSealRequest\>,) -\>
Result\<impl Responder\> { // OREI Logic: Fire event to stream let event = Event { entity_id:
reg.entity id.clone(), version: 1, event_type: "seal_created".to_string(), payload: req.data.clone(), };
state.kafka.publish("seal_events", event).await.ok();

Ok(HttpResponse::Ok().json(serde_json::json\!({ "status": "sealed", "protocol": "OREI", "entity_id":
reg.entity id }))) }

FIDUS Al — AN ASKEYCAPITAL COMPANY Page 5

OREI Protocol Technical Whitepaper

pub async fn health_check() -\> impl Responder { HttpResponse::0k().json(serde_json::json\!({"status":
"OREI_ONLINE"})) }

pub fn config(cfg: &mut web::ServiceConfig) {
cfg.service(web::resource("/seals").route(web::post().to(create_seal))); cfg.route("/health”,
web::get().to(health_check)); }

src/ kafka/ nod. rs

use rdkaf ka: : producer:: {FutureProducer, FutureRecord};
use rdkafka::util::Tinmeout;

use serde::{Deserialize, Serialize};

use std::tine::Duration;

pub mod config; pub use config::KafkaConfig;

\#[derive(Debug, Clone, Serialize, Deserialize)] pub struct Event { pub entity id: String, pub version: i64,
pub event_type: String, pub payload: serde_json::Value, }

impl Event { pub fn entity_id(&self) -\> &str { &self.entity_id } }

pub struct KafkaProducer { producer: FutureProducer, enabled: bool, } pub type SharedKafkaProducer =
std::sync::Arc\<KafkaProducer\>;

impl KafkaProducer { pub fn new(config: KafkaConfig) -\> Result\<Self, crate::error::CoreSealError\> { let
producer = config.to_producer_config().create().map_err(|e|
crate::error::CoreSealError::InternalError(e.to_string()))?; Ok(Self { producer, enabled: true }) }

pub async fn publish(&self, topic: &str, event: Event) -\> Result\<(), crate::error::CoreSealError\> { let
payload = serde_json::to_vec(&event).map_err(|e|
crate::error::CoreSealError::InternalError(e.to_string()))?; let key = event.entity_id(); let record =
FutureRecord::to(topic).key(key).payload(&payload); match self.producer.send(record,
Timeout::After(Duration::from_secs(5))).await { Ok(_) =\> Ok(()), Err((e, _)) =\>
Err(crate::error::CoreSealError::InternalError(e.to_string())), } } }

src/ kafka/config.rs

use rdkafka::dientConfig;
pub struct KafkaConfig { pub brokers: String }
i mpl Kaf kaConfig {
pub fn fromenv() -\> Self {
Sel f { brokers: std::env::var("KAFKA BROKERS"). unwrap_or_el se(|_| "local host:9092".to_string().
}
pub fn to_producer_config(&self) -\> CientConfig {
let mut config = CdientConfig::new);
config.set("bootstrap.servers", &self.brokers);
config.set("nmessage.tineout.ns", "5000");
config

FIDUS Al — AN ASKEYCAPITAL COMPANY Page 6

OREI Protocol Technical Whitepaper

src/occ/ nod.rs

use sql x: : PgPool ;
use std::sync::Arc;
use crate: : kaf ka: : Kaf kaPr oducer ;
pub struct CccManager {
pub pool : PgPool ,
nax_retries: u32,
base_backoff_ns: u64,
kaf ka: Opti on\ <Ar c\ <Kaf kaPr oducer\ >\ >,
}
i mpl CccManager {
pub fn new(pool: PgPool, max_retries: u32, base_backoff_ns: u64, kafka: Option\<Arc\<KafkaProducer'
Self { pool, nmax_retries, base_backoff_ns, kafka }
}
}

src/ nodel s.rs

use serde::{Deserialize, Serialize};

use sql x:: FronRow;

use chrono::{DateTime, Utc};

/1 Standard structs (omitted for brevity, sane as previous output)

src/error.rs

use actix_web::{HttpResponse, ResponseError};
use thiserror::Error;
\#[derive(Error, Debug)]
pub enum Cor eSeal Error {
\#[lerror("Internal error: {0}")] Internal Error(String),

}
i mpl ResponseError for CoreSeal Error {

fn error_response(&self) -\> Htt pResponse {
Ht t pResponse: : I nternal ServerError (). body(self.to_string())

}

}
pub type Result\<T\> = std::result::Result\<T, CoreSeal Error\>;

m ORElI Command Center

Once the files are in place, use these commands to operate the protocol.

1. START THE PROTOCOL

This single command builds the Rust binary, sets up the database, and starts the stream.

docker conpose up --build -d

2. VERIFY STATUS
Check if the HAGANE Engine is online.

curl http://1ocal host: 8081/ health
\# Response: {"status":"OREl _ONLINE"}

FIDUS Al — AN ASKEYCAPITAL COMPANY Page 7

OREI Protocol Technical Whitepaper

3. CREATE A CRYPTOGRAPHIC SEAL

Seal a data packet.

curl -X POST http://local host: 8081/ seals \\
-H "Content-Type: application/json" \\

-d ' {
"entity_id": "ASSET_DI AMOND 001",
"data": {

"owner": "AskeyCapital",
"val ue": "100BTC',
"custody": "Col dSt orage"
}
}

4. EMERGENCY SHUTDOWN

Safely stops all containers and flushes data to disk.

docker conpose down

FIDUS Al — AN ASKEYCAPITAL COMPANY

Page 8

